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ABSTRACT

The object of the task is to obtain coefficients of drag
and mass for vertical circular piles in a hurricane wave environ-
ment by the analysis, using non-periodic techniques, of force
and water level measurements versus time as obtained in the
open Gulf of Mexico.

Three methods for the analysis of water wave effects on
piles are outlined and compared, namely: bump-counting, time
domain operations, and spectral operations. The computational
requirements of the time-domain representation as introduced by
Reid (1958) are contrasted with those required by the corres-
ponding spectral representation. The Joint distribution of the
velocity (u) and the acceleration (6) is given, from which the
probability density function of the horizontal component of the
force on the pile, f(t) = kI u u + k2u, is derived where k1 and
k are constants containing respectively coefficients of drag
and mass. A detailed procedure for evaluating the probability
density function is included.
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INTRODUCTION

It is always very difficult to talk in this particular
area to a group that you have not worked with before because
technical work today has its own little secrets and magic
words and my magic words may not be the magic words that you
work with. If you try to avoid them in a presentation, it
sometimes confuses your train of thought. So if at any time
I use a word that you do not understand, the time to stop me
is right then and there to see if I can give a simpler and
more straightforward definition.*

Techniques of time series analysis are applicable over
a very wide range of problems in geophysics and engineering.
They have been applied to the study of such things as the
free oscillations of the earth; turbulence; noise in radio
circuitry; and tides (so as to detect very weak truly periodic
tides in a background of noise due to the meteorological vari-
ability). I have applied these techniques to problems in
waves and ship motions. We have a group at New York Univer-
sity which includes Dr. Leo J. Tick that is doing some very
interesting work in this area now. We are beginning to get
to the point where we can do some intelligent thinking in
connection with those problems that have non-linear features.
The major structure of these theories today is growing depen-
dent upon certain linearizing assumptions that can lead to
incorrect results once in a while if conditions get to be
extreme.

There are different levels of complexity with which a per-
son can attack a particular problem. He can have in his mind
when he starts, a fairly adequate idea of what he wants to get

*The reader must of course, just look up the meaning of un-

familiar words.
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out as the end product of his investigation or he can let the
chips, if you will, fall where they may and hope that some-
thing drops out by luck at the end of the study. Usually,
it is wise to be careful about decidingrwhat you want before
you start.

Suppose I want to study a ship moving through the waves.
The ship is underway, under her own power, moving at a certain
heading with a speed and direction that is constant except
perhaps for such things as surge and a little oscillatory
motion about the mean course. One could do a number of things
to study the motion of the ship. Two airplanes -- heli-
copters probably -- could fly along exactly at certain
positions over the ship and take stereo motion pictures of
the sea surface all around the ship so that the exact wave
elevation everywhere around the ship within say several
hundred yards of the ship would be known. The ship could
be instrumented to record heave, pitch, roll, surge, sway
and yaw. If one wanted to get real fancy, one might even
begin to worry about the effects of the gustiness of the
wind on the superstructure. Miles and miles of chart paper
and hundreds and hundreds of stereo pairs of photographs of
the sea surface could be obtained. If you really wanted to
do the work and if you had about 10 years to do it and a lot
of data reduction facilities, and a great deal of patience,
you could start with the stereo pattern of the sea surface
and come up with a prediction of every one of the recorded
motions of that vessel that would be very close to the observed
motion. You would not have to mention the word probability;
you would not have to mention the word statistics; and you
would not have to mention the word spectra to do that job
although spectral concepts would help in designing the com-
putations to be made.

Now it is also suggested that a simpler problem could
be done in about 1/100th of the time if you concede a certain
point to me, namely, that you do not want the exact time
histories that are recorded, you only want certain statis-
tical features of. it. All of these statistical features can
be obtained from a proper analysis of the seaway in about
1/100th of the time with a corresponding saving in compu-
tational effort. But then one would have to use the concepts
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of probability, statistics and spectra.

So this particular problem can be attacked two different
ways. It is your decision as to what you want. Do you want
faithful reproduction of everything that happens down to,
if you will, a gnat's eyebrow, for this particular sequence
of events, or do you want an adequately condensed summary of
many of the pertinent features of this particular experiment?

There are other times when about the only thing you can
do is try to predict the time history or explain a time his-
tory as it is observed, and then you have to go into the more
detailed calculations that occur in the time domain. You
cannot use these concepts of tLme series and spectra except
as guides as to how to proceed.

Then there are other problems in which you do not even
know how to do that. Then you have to resort to what I call
"bump-counting." Bump-counting is a highly dangerous pro-
cedure and most of the time it has been used, to my knowledge,
the end results are shown to have a large amount of scatter
and considerable uncertainty and unrealiability.

THREE POSSIBLE TECHNIQUES

The three different techniques that are involved in try-
ing to study such problems can be illustrated. These three
techniques might be called (a) bump-counting, (b) time domain
operations, and (c) spectral operations.

A problem that seems to be of interest here can be done
by the three different ways and the results compared and
contrasted. This particular problem has to do with wave forces
on piles. We have a pile and it is supported as shown in
Figure (1). The bottom and the free water surface are also
shown. The problem will be simplified to the case where one
feature of the sea surface will be that the waves are long
crested. In other words, the variability in one space component
will be neglected. This simplification could be serious in
this problem. Just how serious is not known, but errors in
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what is predicted for some of these quantities will occur.
Everything else can be a very close facsimile to what occurs
in nature.

In summary, Figure (1) shows this pile in the water. The
waves are going by, and they are simply a function of x and t.
If we record the waves right at the piling, we end up simply
with a function of time, t, as the wave elevation right at
the pile. Now, in this particular connection one is interested
in the velocities of the fluid along the length of the pile
at a number of points along the pile so let's focus our atten-
tion for this problem again at a particular depth that we
can call, d.

We would like to know, for example, u(t), the horizontal
component of the water velocity, at that depth. We would
also like to know au(t) , or (t), and then finally we would like

to know a function Iiled

f(t) = kIu Iu + k2 (1)

Also, we might want something corresponding to P(t), the
pressure at that depth in the absence of the pile due to the
waves.

Suppose that the water is 30 feet deep, h is 10 feet
from the bottom and the waves have frequencies in them-cor-
responding to a deep water wave length of 90 feet. Then u(t),
5(t), and P(t), will all be appreciable. The waves are con-
sidered to be periodic, and they are sufficiently low so
that we can neglect such things as non-linear features of the
wave profile. We all know how to get all these quantities
if for example,

q(x,t) = A cos(kx - wt) (2)

where J(x,t) is the free surface at different times at the
point of observation. (If you wish, put x z 0.) In equation
(2), k is the wave number, 2rT/L, where L is the wave length.

Since C tanh L)/2 and since L a CT, it follows that
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= C 1/2 (tanh kd) 1/2 and that given

iv and d, k can be found. Tables of this function are given
in various Beach Erosion Board publications. We can find k
and also the u component of the velocity from classical wave
theory,

u(t) =w cosh k(-d + D) cos(kx - wt) (3)
sinh kD

(t) = A 2  osh k(-d + D sin(kx - wt) (4)
sinh kD

P(t) A cosh k(-d + D) cos(kx - wt) (5)
sinh kD

if A is in feet, uis in feet/sec., 0 in feet/sec. *, and P is
in feet of static water pressure. (We could put x = 0 and
still have everything correct at the point of observation.)

This is-all very fine for a wave train with one discrete
frequency in it, but then if we start looking at the data
we get in a real situation; we get something that looks
like Figure (2).

BUmp counting. A bump-counter says, "Here is a wave
this hIgh and withthis period. Let's substitute these two
quantities into equations (3) and (4) to predict u'and 5.
Then substituting into equations (1), we will have the value,
f(t), for this. particular peak of the time history." This
is quite an assumption, is it not? + think you will agree
that It's been done over and over in many different appli-
cations. For example, oceanographers did it to P(t) and
wondered why everything didn't come out right; they were
20% off, or more in predicting J(t) from P(t). There
seemed to be some mystery as to just how deep the water was.
A paper written many years ago concluded that the classical
theory of hydrodynamics was not right. The theory of clas-
sical hydrodynamics was right; what was being done was wrong.

Time domain operations. The man who solved this problem
correctly for wave forces on piles by means of computations
in the time domain representation was Reid (1958) and the
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group that works with him at Texas A&M. What did he do?
Well, in very crude and elementary terms, he made a Fourier
analysis of 1(t). Following this procedure leads to correct
results as will be shown a little later.

A bit of information theory should come in here. What
is the way to study such a continuous record properly with
digital techniques? If one marks the record off in equally
spaced time intervals in such a way that the sequence of
points that you get when connected by a smooth curve re-
produces the interesting detail of the record, then the
points describe the record sufficiently well. In other
words, one would not take a record ahd read it at intervals
lettered I, II, III-and so on in Figure (2). But at the
same time one would not have to read one hundred points
over the interval marked A to reproduce. the important in-
formation in that record.

The record is inspected so as to estimate the highest
frequency in the record (or the shortest period). The
record is then read off at equally spaced time intervals
equal to one half of thil shortest period. The result is
a sequence of.numbers, and the sampling interval is said
to have determined the "Nyquist frequency".

Let us call these numbers JI1, T2, 13 , up to %. To

reproduce a 20-minute ocean wave record of this nature
adequately it is necessary to read it,-depending on a lot
of things, something like every second, perhaps every half.
second. Let us take a half second. There are then one
hundred and twenty observations in .a minute, or in a 20-,
minute record, about 2,400 numbers. Thus N in this case
is about 2,400 numbers.

It is possible to write down a sum of sines and cosines
that will reproduce this record, this whole 20-minute
piece, exactly at all 2,400 points. There exists a theorem
in information theory that says you can do it with a Fourier
series that has 2,400 terms.

So, one would write down equation (6).
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N/2 N/2

. an cos 2rn + bn sin 2,r n t (6)
n-I n:l

Let the whole length of the record in Figure (9) be T, which
is equal to 1200 seconds in this example. Then the Fourier
series will contain all of the harmonics of r, namely,
T/l, T/2, T/3, ..**T/N. If we assume a zero mean so that
the constant is zero, the periods in the record will be
1200 seconds, 600 seconds, 400 seconds, 300 seconds, 240
seconds, and so on all the way down to 1 second, if N is
2400. With this theory and with 1,199 values of a and

n
1,200 values of b n (plus the zero mean to make a total of
2,400 values) for a 2,400 point record, one can reproduce
this wiggly line exactly at the chosen points.

One might object that there is nothing in this record

with a period of a second. That means that the a's and
b's corresponding to this period are zero. It's Just as
important to know that some of the a's and b's are zero
as to know that they have some value. The proper choice
of spacing in Figure (2) for ql' q2' would yseld

zero values for the high frequencies at the upper end of
the frequency scale.

We have now reached the point where it is possible
to reproduce the wave record at a chosen number of points
exactly for any length of time. Outside of this interval
of T seconds the actual record in nature will go on doing

something similar that we do not care about. It will not
look like Figure (2) anymore. The series representation
in equation (6) will repeat itself for the next interval
of T seconds. We do not care about that either if we
consider only the record that was obtained.

Now let us predict u(t) from the J(t) function.

What must we do? We must multiply each of these coef-
fipients, an and bn by w cosh k(-d + D) as in equation (3).

slnh kU
This process works just as well for the sine part as the
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cosine part. But then notice that what happens to each
coefficient is very strongly dependent on the frequency.
So that when you study the u component of the velocity
at a fairly great depth you do not see the high frequencies
any more. One obtains a much smoother version of the
free surface record. This is, of course, where one runs
into trouble with the bump-counting technique because
One -cannot account for the selective attenuation of all
the components in the record. Thus one can write down
equations that correspond to u, 0, and P(t) for this
Fourier series. If one wanted to, these equations could
be evaluated at each time point, and the records could
be constructed for u(t), 0(t) and P(t) on the basis of
this analysis. That isn't the way it would be done actually,
but this is to show the mechanism behind'it. The right
attenuation, or the right factor, for each of these coef-
ficients, is applied.

This attenuation depends on frequency, the depth of
observation, and the depth of the water. (The wave number,
k, Is a function of frequency and water depth.) A graph

w cosh k(-d + D) andof the attenuation functions sinh kD

sinh kD is shown in Figure (3), as the frequency

ranges from zero to 2 radians per second for d 74.5 feet
and D 97.7 feet.

A very different function, whose spectral components,
these a's and b's for u and 5, are quite different from
the coefficients of q, is the result when the Fourier
series representations of u and 5 are obtained. A large
number of terms at the high frequency end where q has
some contributions do not have to be evaluated when u and
u are considered. One might ask if the big (long in time)
bumps are dominant. They are, but the big bumps have in
them some of the very short waves too.

This is not the way that Reid did the problem; he went
one step further and constructed the records of u and

-8-



without ever finding the Fourier series representations. It
is possible to apply the attenuation discussed above to each
of the Fouiier components and reconstruct the record. This
procedure, described above, is easy to visualize, but it is
not the easiest way to do it on a computer. However, it is
equivalent to constructing u(t) by means of equation (7).

u(t) . K('r) '(t - f*) dr* (7)

The integral in (7) from -. to +w involves a kernel given
by K(:T*), and this kernel operates on i(t - T*) to produce
u(t). (T* has nothing to do with the Tused before.)
Equation (7) shows an integral from minus infinity to
plus infinity. The actual integral extends over a range
of perhaps plus or minus two minutes about the central
point. In practice, the integration is replaced by a sum-
mation-obtained by multiplying K(r*) times (t - T*) at a
finite number of points and summing a group of such
products. Each operation produces one point for u(t) and
then t is increased to the next value needed and the pro-
cess is repeated. There is another different kernel for 0.

The result is a problem for an electronic computer;
one solves for what these kernels are, runs in J(t) and out
comes u(t). The kernel is a function, among other things,
of the depth of the water and the depth of the.point of
observation. A new kernel is needed each time these values
are changed. To do the same problem over again with the
water twice as deep at a point still 15 feet below the
surface, another kernel has to be calculated. To do it
once again with the wateir twice as deep, the pile twice
as long, and the point of observation twice as deep, still
another kernel must be computed. The same thing can also
be done for 5(t) except that another kernel is needed.
The frequency effect is put in by the shape of the kernel.

Well, if you have seen some records of such observations,
right away you can tell some of the things that happen. Some
results of Lukasik and Groesch (1963) show such records.
Other records show the next step where graphs of equation (1)
are obtained. For study purposes, it might be very good to
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try to measure u and i at the pile before forming equation
(1) to check how well each term is predicted.

Reid then compared the function, f(t), that he formed
mathematically by this prediction technique with the actual
recorded observation of f(t). The computed and predicted
quantities agreed quite well. The agreement could be im-
proved a little bit, but basic agreement was obtained be-
tween what was predicted numerically from the free surface
record down to the point of observation, and the actual
force recorded on the pile at that point.

Reid had a whole set of tables of these kernel functions
and he applied them to the surface record and predicted the
final output force. He didn't have any data to check u antd
u against.

Now there was one trouble with Reid's study. In my o
opinion, it was that the records he used were not long
enough. His results could probably have been improved if
he had had records of 20 to 30 waves or more instead of
3 or 4 waves, although he has been able to predict total
force. This is the only way he could predict these quanti-
ties for an observed wave record.

One may now ask the question: how does one generalize
this and how would one tell an engineer what to do to use
Reid's study to design a pile for some other place and-or
some other waves? The pile he used had strain gages so
that one could determine the desired forces. Reid predicted
the deflections and forces on it successfully. How would
one apply this to an engineering problem? Now that one has
reason to believe that the method works, one would take a
free surface wave record at the point where a new instal-
lation is to be made and go through all these calculatOhs
on it. Except one wouldn't have experimental data to
verify against anymore. A typical piece of time history of
the forces on the pile would be enough in design considrra-
tions, would it not? It would be necessary to use experi-
mental drag and mass coefficients to actually get the
forces. So one could do it that way.
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But now, supposing for some reason one wanted to know
something about 200 different wave records and the effects
of each of these wave records on a pile. By then one is
beginning to get into quite a computational problem. Then
you start counting pennies. The structure is worth so
much, and the computation cost comes out to be 5 percent of
the total cost. So we determine we can spend 5 percent of
our money in designing and still save.

Spectral operations. But the time is going to come when
one wants something a little simpler that will give essentially
the same information, perhaps, and that would be where time
series and statistics could come in.

As far as I know, this problem has not been solved in
full in terms of the probability structure of the functions
being studied. This is because of the non-linear term
k J ul u. Now we haven't reached the point where we can do
many things in non-linear theory from this point of view.
However, let's just go back over some of this; for example,
one would have no trouble at all in finding out everything
one wants to know about 0 or u on the basis of J(t) with-
out predicting their exact time history. We might even be
able to say a few things about equation (1) without pre-
dicting the exact time history.

The first thing one would do would be to take a look at
the structure of equation (6). It has a very interesting
structure. 1(t), as sketched, has a very interesting nature
too and the a's and b's that describe q(t) have some very
strange features.

First, consider all of the points that have been read
off at equal time intervals through the whole record. If
the waves are not too high, one can take all of these points
and shuffle them so that their order is not known anymore
and study them as a sample from some statistical population.
These points turn out to be more or less normally distributed.
The most probable value for points from this record is zero,
or, stated another way, for any particular reading at some
instant of time chosen at random, the value that is most
probable is zero. More than that, the points from such a
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sample have a normal distribution -- very closely, not exactly,
but close enough for many practical applications.

A normal distribution is characterized by two numbers, the
mean and the variance. If one is given these two numbes ft-
a normal distribution, one knows everything about it. One
can estimate the variaace just from the points that have been
read off. The redord can be adjusted so that the points have
a zero mean. All the values are squared, added, and divided
by the total number of points. This gives the sample variance

0 which can also be denoted as a One feature of this.

record, namely, 0 , as estimated is now known. (This corres-

ponds to looking at

T

I S L )] 2 d
and letting the time T get large in thinking about the actual
true variance of the record.)

T T .'N/2 N/2
p2  21 1 b.in 2t 8

iT dt Zn a cos - + n b n "2-1-. dt (8)T T T n T n T

If one performs the same squaring operation on equation (6)
as in (8), one sees right away that the sum of the squares
of all the Fourier coefficients has to be similar to

#0 also in some sense.

Now, one can talk about a function called a power spectrum.
The power spectrum of J(t) is that function of the frequency,
w, that resolves the total variance, *o, into frequencies. Let

us call the spectrum, S (w). It has the property that

s: S (w) dw = *0 (9)
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The total area under the spectral curve equals the variance
of 1(t). Now imagine that one takes this record and puts
a signal proportional to it on magnetic tape and imagine
that one constructs a very narrow band filter, that passes
only a certain amount of the total power in the signal.
The filter is as shown in Figure (4).

Let's even be more idealistic about it and make a square
filter. One cannot quite do it electronically, but let's
assume that one has a very narrow band square filter. Let's
put this electronic reproduction of the wave record through
this filter and get out another record that is much purer
in tone but which is not quite a sine wave. But all one

can get art frequencies from w - to o +  Then
0 2 2

one computes the variance of this new record and plots it
at we. Finally, let's tune this filter slowly over the

whole range of M. The result is the power spectrum as a
function of frequency as sketched in Figure 5. This spec-
trum is the resolution of the total variance of the wave
record into its frequency components. This graph shows
that most of the variance in the wave record is contained
at WA" There is nothing below WBo The spectrum falls off
asymptotically at high frequencies.

The term "power" spectrum is used because these con-
cepts were first worked with by electrical engineers.
They passed currents through resistances and 12R is power,
so this graph came out to be a power spectrum. But wave
spectra and other spectra in civil engineering do not have
the dimensions of power most of the time. For example,
the spectrum of a wave record, which is a record of water

elevation as a function of time, has the dimensions of

(length)2 x (time). Frequency is l/time; therefore,

S(W) dw has the dimensions of (length)2 for the spectrum
of the waves. The dimensions of the spectrum of u are

[|(length)2/(time) x (time), or (L2/T). The dimensions of
a '"power" spectrum are given by the square of the ordinate,
the vertical axis of whatever is being analyzed, times time.
Thus spectra can have all kinds of oddball dimensions. It
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depends upon the units of what is being measured. The
dimension could be kips squared seconds for anchor chains,
or feet per second, all squared, times seconds, or, for an
acceleration, it could be feet per second squared, all

squared, times seconds; i.e., (L2T'3 ).

The "power"spectrum is to a stationary Geussian process
what the variance is to a normal distribution. That is, if
one knows the variance of a normal distribution with a zero
mean, one knows everything about the distribution. If one
knows the spectrum of a stationary Gaussian process with a
zero mean, "in principle", and one puts that in quotes,
one knows everything about this Stationary Gaussian process.
Now there are lots of things that are not known yet, but, in
principle, the spectrum is equivalent to the process for
any problem in probability. Some of the problems of describ-
ing a stationary Gaussian process have not been solved, but
in principle, given the spectrum the problem can be solved.

One can get a wide variety of useful information out
of the spectrum without ever looking at the process. For
example, one can predict the average time interval between
zero up-crossings in a record. One can predict the number
of maxima and minima in the record. One can even predict
fairly well the distribution of the time intervals between zeros
in the record. One can say something about the joint dis-
tribution of the amplitude of a half cycle and the half
"period". All these results are very different from what
your intuition would tell you and what the bump-Counters
obtain by these methods. They check very well in a number
of applications. One can use the whole book by Rice (1944)
on "The Mathematical Analysis of Random Noise" and apply
it to these problems. Everything in it carries right over
to the study of ocean wave records. It is a beautiful
book written in 1944, full of very useful results that can
be applied to ocean wave records.

So now one has the spectrum of the free surface, and
one wishes to predict the spectrum of u. The spectrum of
u is equal to the spectrum of the free surface times the
square of the coefficient by which A in equation (2) is
multiplied in (3), because that is the way each component
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is attenuated to get u(t). One is working with squared quantities
and so if one takes the free surface spectrum and multiplies
it by the square of this factor one obtains the spectrum of
u. Let us see what the spectrum of u looks like. The factor
can be written as

G(w) = [1 cosh (k(Od)[-d + D])1 / fsinh k(w.d)D] 2 (10)

in order to emphasize the point that the wave number (k) is a
function of both frequency and depth. k a 2rT/L, and the
length of a wave in water of finite depth is a function of its
frequency and the depth of the water. (A similar equation to
get the spectrum of 0(t) can also be written doyin.) One can
look these functions up in tables and the only variable for a
particular problem is w when d and D are fixed. The result of
multiplying the spectrum in Figure (5) by equation (10) and by
a similar equation to get 0 is shown in Figure (6). What
happens is quite evident because the hyperbolic cosine for-kd
waves in very deep water becomes an exponential, e , and the
high frequencies are attenuated.

At a certain frequency the spectrum is cut off very sharp-
ly. The frequency corresponds to waves with the length equal
to twice the depth of the observation point.

A simple example would be a depth of 15 feet with a length

of under 30 feet for the waves. From L = 5.12 T2 , the period is
slightly over 2 seconds. For any frequency corresponding to
2rr/2 or higher there is just nothing left in the spectrum of
the u component.

Spectra for u(t) and 0(t) with different dimensions
(velocity squared times time and acceleration squared times
time, respectively) are the result. All of the high fre-
quency contributions to q(t) have been lost in the spectra
of u and 5. The area under the spectral curve for u(t) is
equal to the variance of the u component of the particle
velocities. It is:
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f S ( (ii)
0

This is the variance of the horizontal component of the velo-
city at this depth. The record of u(t) did not have to be
constructed to obtain this result. An operation on a spectrum
was all that was needed.

Now by taking this spectrum of u(t) and performing some
operations on it, one can predict many statistical proper-
ties of u(t) such as the average time between zeros and the
highest 10 percent of the u velocities. These properties
can be pTedicted because u(t) is also a stationary Gaussian
process. What is the advantage of doing it this way? The
advantage is that these are the quantities one wants and it
costs a lot to get them. The spectrum can usually be described
by about 60 to 120 numbers instead of 2400 time points for a
typical 20 minute wave record. The transformation required
to get the spectrum of u(t) is the result of a multiplication
of the wave spectrum by somewhere between 60 to 120 numbers.
The statistical properties of this u component of the velocity
can be predicted without leaving the spectral domain. One
calls the transformation a "response operator" in ship
motion studies. Incidentally there is no phase shift. There
is no problem of time delay. In this particular case each
component remains in phase with the surface component. The
other way to get the same information about u(t) would be to
apply equation (7) to 1(t) to produce a 2400 point record of
u(t) and then extract the required statistical information
about u(t) from its time history. This would require, say,
100 to 120 multiplications in each convolution to get u(t)
at each time point and there are, say 2400 points in the
record so that from 240,000 to 360,000 arithmetic operations
would be needed as contrasted with perhaps 60 to 120 in
this case and perhaps 10 times that to apply the probability
results of Rice.

The spectrum is handled in just the same way except
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the 0 is 90 degrees out of phase with u.* One wants to
predict the spectrum of 0. The filter function 2that has just
been discussed simply has to be multiplied by w . Wat is
the spectrum of 5? It is also shown in Figure 6 and defined by

S. (a,) M (2 Su (C) (12)

The high frequencies are amplified by this filter function and
the low frequencies are attenuated. Then one could compute

#2 z S (1)dw as the variance of the time derivative of

the velocity.

What does the spectrum of 0 tell one about 6. The spec-
trum indicates that there ought to be more zeros and shorter
"periods" in the record for 0 than in the record of the velocity
at this same depth. This one would find by applying certain
results given in Rice (1944). The horizontal acceleration
of the water at that same depth has a different structure
from the horizontal velocity of the water at that same depth.

Approximately 2400 points in the original time history
would be involved in computations to get these same results
in the time domain, but now a stage has been reached where
computations on only 60 to 120 numbers are needed to get
similar results concerning the probabilistic structure of the
record. These results cannot give anything about the exact
time history of u or the exact time history of 5, but still
one can obtain a wide variety of results about things like
the variance of u, the variance of C, the zero crossings of
u, the probability structure of u -- everything that you can
deduce from the spectra. This is why one works with spectra.
In a sense one wants to generalize; one only wahts certain
features. If these features are not the ones that are wanted,

A little more care at this point would introduce the
appropriate cross spectra.
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one does ndt proceed this way. But, if probability results
are wanted, one looks at the power spectrum of the time his-
tory that is being studied.

A lot of our work has been to do exactly that, namely, to
study what can be gotten out of the spectral representation.
One can never say anything specific about any particular
record, but one can say a lot of things about the statistical
properties of the record or any other one from the same
population.

Every time one changes any one of the parameters in the
problem of wave forces on a pile, one has to recompute.
Whether in the time domain or in the spectral domain, this
is neither an advantage or a disadvantage. In one way, spec-
tral techniques are advantageous because the amount of re-
computation required to cover a wide variety of conditions
is less than in doing the analysis in the time domain.

However, by these spectral techniques, the results of
Reid have still not yet been obtained. So far, just the
spectra of u and 5 have been obtained with the possibility
of deducing many of the statistical properties of u and 5.
Nothing about what the function, f(t), looks like has yet
been obtained.

With reference to the wave record, q(t), every time any-
one has taken a wave record at the surface of the sea in which
they believed the recording procedure was accurate and
studied it in order to see if it is normal, something was
found that looked very close to normal. However, as soon
as any tests are tried on it, the results suggest that the
record is not quite normal. The non-linear features of waves
at the free surface are probably the reason why perfect
agreement is not reached. Theoreticians do not know how to
handle these non-linear features yet, although this is one
of the things that I am working on now.* But for many,
many applications, what we have is more than enough. The

*To up date this remark see the papers given at the Eastern
Conference on Waves to appear in April 1963. (National
Academy Science 1963)
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record is so close to normal that usually one does not make a
serious error by assuming the waves are normal. For the veloci-
ties below the surface, the assumption of normality is even closer
to actuality.

Now, what could a statistician say about the function f(t)?
The first thing he would say is that it is not Gaussian, because
it contains a square of a Gaussian distribution in the I u u term.
The problem of the distribution of f(t) has been studied a little,
and I can show you some things about it as defined by equation (1)

What is needed is the distribution of f, given the joint dis-
tribution of u and 0. What is the distribution of u and 5? We
know that u at any particular instant of time is a number from a
normal distribution with a variance of *l, and points read from

are numbers from a normal distribution with a variance of *2"
Also from a probability point of view u and 0 are independent.
That is, the vblue of 5 that one will observe at this particular
depth of water at a particular time has nothing to do with the
value of u at that same time. This is apparent since one involves
a sine and the Other a cosine in equations (3) and (4). There is
no correlbti6n between them. If one takes a whole sequence of
observations of pairs of values of u and 5 and plots them in a
scatter diagram, there will be no correlation. Thus the joint
density of u and 6 is given by equation (13). If u and 0 were de-
pendent, there would be a correlation coefficient and a cross pro-
duct term in the exponent of (13) which wdul"hot bother further
analysis too much.

P(u,O) du dO = 2rL..r....I . [e-u 2/2#l E 2/221 du dO (13)

-< u <

-< a <0

J(t) and u(t) are highly correlated, but J(t) and 5, and u and 0
have zero correlations at zero time lag. (However, if one compares
u with 0 observed, three seconds later, there is a correlation.)
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Let us pursue this a little bit just to show what kind
of thinking a statistician might do in this particular case.
We have this function, f(t); let's call it f. The distri-
bution of u and 6 is defined from minus infinity to plus
infinity with variances, #l and #2 as in equation (13).

(For example, for a normal distribution with a variance of
one, the odds are about one in ten thousand that one will get
a value for an observation outside of plus or minus four.)
Although these ranges are infinite, all observed values of u
are finite for a practical case. So now one wishes to make
a transformation on equation (13) that will preserve measure,
that will still be a probability density function, and that
will give the distribution of f.

The random variable, f, has. to be defined in two
separate regions. It has to be defined for 0 < u < a and
for - - u < 0. This absolute value sign in equation (1)
has a different meaning depending upon the sign of u and so
let us assume that u < 0 and then I ul = u so that

f - klu2 + k 2 (14)

In the plane of u and 5, one is interested in the right half
plane as in Figure (7).

To make a transformation of variables, define

6*= 5 (15)

(this is a simple little device to keep the transformation
of variables straight). The inverse of equations (14) and
(15) is given by equations (16) and (17)

C C(16)
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k|

+ f -2(17)

subject to the condition that f < k 2 The Jacoblan of

i and u is given by liii
Sk 2  (18)

and with these results equation (13) can be transformed into
equation (19)

I f k2

1 f/ ~ 1  1 k 1 U 2  6 df (19)
PI(f)df u I j

Iok k1

An additional transformation of variable, namely that

f k 2 " u2  (0

So that

k2
dot k - dO* (21)

1

-21-



yields
1t 

1
Pj fadf L ft df (22)

2"u 0 2k 2 /0

The other half of the distribution is obtained by considering
-< u < 0. For this condition,

f -ku 2  + k 2 (23)

5. :(24)

A similar sequence of operations ydelds the result that

*1 21 *2 k 2

p2(f)df 1deod df (25)I rz 2k/ EL T2 2

The sum of equation (22) and (25) is given by

-- 2/2

S2 [( k2  r/ I
P(f)df _______________
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-. kl 1
+2e do df (26)

i 0o 2k2 /0 J

As a check, equation (26) can be integrated over f from -u to
- prior to the integration over o. The integrationl:over o is
then simple and one obtains the result finally that

0 P(f)df . 1 (27)

(If k1 is a function of u, then f is no longer just a quad-
ratic function of u, it's a function of u that is even more
complicated. On the assumption that k is some constatht for
the range of u that has occurred then the above derivation is
useful.) The book to read on such transformations is Courant -

Differential and Integaral Calculus. What does equation (26)
tell us? If you knew kl, k2, *l' andii#2' you could evaluate

this integral as a function of o to get the function of f
out of it. Then you could plot the probability density as
f went from -w to +w. If one cannot evaluate the integral,
one writes a program for it on a computing machine. P(f)
can be computed in a few minutes. AnVway one can get
P(f)df, one way or the other, from equation (26).

For one condition, if k2 0 were very large compared to

k1ul ul , P(f)df would be nearly a normal distribution; if

k2 were unimportant compared to klul ul , P(f)df would be

one half of a X2 (chi square) distribution with one degree
of freedom reflected in the origin. For intermediate cases,
depending upon the relative strength of kU I u and k2 ,

one gets a whole family of curves. Just what P(f)df would
look like I am not sure, but whatever it looks like, it
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would not be normal if k u I ul makes any contribution at

all. (The X distribution and the Gamma distribution are
simply two names for the same thing; see Mood (1950)
Introduction to the Theory of Statistics, McGraw-Hill Book
Oompany, Inc.)

What one could do next would be to go through a re-
cording of f(t), if it has been recorded, read off the values
of that function at equally spaced times, plot up the his-
togram, and compare it with this distribution (equation (26))
to see if the theory checks out.

We have now reached the point where certain properties
of f(t) have been obtained without ever evaluating records
of u and 6. One can start with a free surface record as
a function of time, compute the spectrum of it, operate on
the spectrum to compute the spectra of u an 5, take the
areas under those two spectra to get the variances of u and
Q, and then from equation (26) predict the distribution of
individual observations of f(t).

Every time the spectrum of the free surface is changed
one gets a new distribution. Now i' the distribution of
f(t) is what you want to get, it is a lot quicker this way,
and in many ways not quite so hard, than to do the time
domain study starting with the wave record.

In the above derivation it has been assumed that kI and

k2 are constants that are known. If everything else in equation
(26) were known except kI and k2, actual observations of

P(f) and computations of #1 and #2 could possibly then be

used to find out what the values of k1 and k2 ought to be

to give the best fit to the observed P(f).

These results give you the probability structure of
f(t) at one depth. If one wants to go to another depth,
one has to do it over again. Each different spectral com-
ponent is attenuated at a different rate at the new depth.
But once one has a computer program, something like changing
parameters is nothing, one just recomputes with the new
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parameters. Once one goes through the trouble of writing a
proper computer program one can do any of these things in
either the time domain or in the spectral domain. Once you
have a program, the processing of a large amount of data is
easy. A little bit of patience and these computers zip right
through this material with no trouble at all. One can vary
the parameters all over the place to get some sort of a
feeling for design considerations.

The derivation of the distribution of P(f) would be one
part of the answer in studying f(t). But one wants to know
other things too, and these will be very hard to derive.
f(t) is a stationary process, but certainly not Gaussian.
What does the spectrum of f(t) mean? It only represents a
part of what is needed to describe f(t).

If this theoretical representation is inadequate for
f(t), then the engineer must produce one that is adequate
before these techniques can be applied. In a sense that is
an engineer's problem not mine. But if equation (1) is an
adequate expression for f(t), then this is the way the
problem is handled if one is interested in it from a proba-
bility point of view.

But if f(t) is not adequately represented by equation
(1), then we approach the game of musical chairs. One runs
into this a lot today. One solves a problem that needs to
be solved and goes to the people one i swrking With'and they
wonder at your answer. Then they suggest changing the pro-
blem. One obviously has got to start with a properly for-
mulated problem that is adequate from a physical point of
view. If one formulates a nonsense problem, one is guar-
anteed to get nonsense results. If one does not formulate
a problem that corresponds to physical reality, all the
mathematics in the world is not going to tell you anything
sensible about you final result.

I like to solve a problem that someone thinks has a
reasonable chance of being applicable to a practical problem
in waves or ship motions, or what have you. These problems
are the hard ones to solve because one can go around in
circles for a long, long time with different people trying
to set down the rules with which one is going to operate.
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One always seems to run into someone that says that such and
such a term has been heglected and that the problem cannot
possibly correspond to reality. If one cannot put reality
into the problem at the start, one surely does not get it
out. If one cannot put the pertinent physical parameters,
the structure of the problem, in mathematical terms, all
the operations on it in the world aren't going to get out
anything sensible.

But look at the beauty of just the derivations of going
from the free surface to the horizontal velocity components
here. There is physical reality in this step. It's the
physical attenuation of each spectral component according
to frequency for irregular records. This is the type of
theory that the classical hydrodynamicist derived before
1920; they had all of this well understood for sine waves,
but the trouble was that ocean waves are not sine waves.
If ocean waves were sinusoidal, there would not be any
problem, but they are not.

CONCLUDING APPENDED REMARKS

Since the above lecture was given, Mr. Seymour Kaplan
of New York University has studied equation (26) in greater
detail and shown how it could be evaluated as a probability
density function. His results are given in Appendix I.

There are a number of possible applications of these
results the most direct being the study of f(t) as observed
in a wave tank in which long crested irregular random waves
are generated as at Davidson Laboratory. This would provide
a useful check of the consistency of the values for the
constants in equation (1) and a check of the correctness of
the above probability density function.

It might be possible to extend the analysis to short
crested waves by considering u, v, 0 and .

Finally what is ultimately needed is a quantity of the
form
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0

F(t) . f (A' - z)f(t)dz (28)

to get the bending moment on the pile, for example. This
could be put in the form

n
F(t) = E (I ' +1 - ia) f m(t) (29)

where f M(t) = f(t a z = - t + ma) (z is a parameter).

The different fm(t) would have a complicated multivariate

density structure, but it would perhaps be possible to
obtain some results on the distribution of the actual in-
tegrated effect on the pile.
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APPENDIX I

EVALUATION OF THE PROBABILITY DENSITY OF THE FORCE

by

Seymour Kaplan
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The probability density is of the form:

I -[. f 2/2 1

P(f) o f e•" 1/ 2 *I le 2 2 2

e -~2~i e[±~- f]2/]

S o 2k 2 -

-m< f<

This breaks up into two integrals:

'2
e Ae-y3(f) a-YIa - y2at

_Y102 - 't

1 2 = Ae-') of0Z a 71
e  dot

where

Ax 1/4 Ttk 2 vZ-

32 2
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,y2(f) = f-k" + T1
fk2 1

Y(f) 
f2 /2 2 k 2

3 2 2

Y 1 2 kl 2

Y '( f ) -f 1 +-A -, +
22k 2 2#1

'(f) f f2/2 02 k2 : 3(f)

ll(f) and 12(f) are evaluated easily if we note that

the integrands of I1 and 12 are the Laplace transforms of

22
-Y1a _Y11 0

e e

e-- I- and

Referring to an extensive table of Laplace transforms,*
we find that

* Tables of Integral Transforms, Volume I, Bateman Manuscript
Project, page 146, equation (23).
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2
Y2

e + K1 ( )1 2 1 8i (
4

and similarly,

A t - Y3  + ( (V)2

2 2

4

The functions K (x) are called Bessel functions of

imaginary argument, are extensively tabulated, and are
fundamental solutions of the Oifferential equation:

22 + x 2  +
dx2  dx

The particular function desired is KI(x) where x is

real. KI(x) is always positive, tends exponentially to zero

as x --- , and therefore has no zeros for - < x < *a
It is an even function of v, i.e., K(x) = K(x).

An asymptotic expansion for K (x) iss
1.

12 _2 2 2 2 2
K (x) () 2  e- x [1 + j4+ 1 ) (4o2" 1 )( 4 v " 3 +

2x l.8x 2'(8x)2
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Values of K(x) may be found from tables of I(x) and Il (x)

4 4 4

and the relation:*

K(x) n [I- (x) - I (x)]D 2sinniu -UD

Presumably, one would want to calculate P(f) as a function
of f for various sets of the parameters 4 1, 42' k,, and k2.

Thus, a set of parameter values would be the input to the

problem nd the plot of P(f) vs f would be the output.

For f 0, y2  Y 1/2I1 and y 3  Y 0. Therefore:

A 2 2 2 22

A *2k2  *2 k2/16 Ik1-() -- k e Kj( 2)
kl~l4 16*lkl

2 2 2 22 2

A F!2k2  #2 k2/62 k 22 2+ 2 2 e 1 22
2 k1*1  164rlk 1

As f gets large, P(f) should go to zero. It is helpful

to see what P(f) looks like for large f. The ' 2  becomes

2fY2
V As can be seen from the asymptotic expansion,

* Tables of Bessel Functions of Fractional Order, Volume II,

Computation Laboratory, National Bureau of Standards,
Columbia Univ. Press, 1949.
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1

I(x) -(i-2 e- ~ and
4

A _Ty3 (TT8y 1 ) rr 2 1  22k
1 2 k 1 1y

A similar formula holds for 12(f). The above approximation

would probably be good for numerical values of f > 5.

For smaller values of f, the tables given in the second
footnote could be read into the computer and a program in-'
volving a table look-up can be easily written for the evaluation.

Also, since P(f) is a probability density, it cannot be
negative. This is obvious from the equations for I and I2,

remembering that Kl(x) has no real zeros. After an initial

set of runs, a check should be made to insure that r P(f)df.1,
as is necessary if P(f) is to be a probability density.
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APPENDIX II

ATTENUATION FUNCTION FOR VELOCITY u,

AND ACCELERATION 6.

Water Depth (D) Depth of Submergence (d)

97.50 74.50

L Frequency, Period, T f(u) f(d)
0 to (rps) (sec.)

10.0 4.4951 1.397 .0000 .0000

20.0 3.1784 1.976 .0000 .0000
30.0 2.5952 2.421 .0000 .0000

40.0 2.2475 2.795 .0000 .0000

50.0 2.0102 3.125 .0000 .0000

60.0 1.8350 3.423 .0000 .0000

70.0 1.6990 3.698 .0000 .0000

80.0 1.5892 3.953 .0000 .0000

90.0 1.4984 4.193 .0000 .0001

100.0 1.4214 4.420 .0001 .0003

150.0 1.1606 5.413 .0033 .0045
200.0 1.0051 6.250 .0138 .0140

250.0 .8990 6.988 .0311 .0252

300.0 .8206 7.656 .0518 .0340

350.0 .7598 8.268 .0728 .0420
400.0 .7107 8.840 .0925 .0467

500.0 .6357 9.883 .1262 .0510
600.0 .5803 10,827 .1528 .0514
700.0 .5372 11.694 .1736 .0501
800.0 .5025 12.501 .1903 .0480

900.0 .4738 13.260 .2038 .0457

1000.0 .4495 13.977 .2150 .0434
1200.0 .4103 15.312 .2324 .0391

1400.0 .3799 16.538 .2452 .0353

1600.0 .3553 17.680 .2550 .0322

1800.0 .3350 18.752 .2627 .0294

2000.0 .3178 19.766 .2690 .0271

2500.0 .2842 22.100 .2804 .0226
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3000,0 .2595 24.210 .2882 .01944000.0 .2247 27.953 .2980 .01505000.0 .2010 31.256 .3039 .01226000.0 .1835 34.237 .3079 .01037000.0 .1699 36.980 .3108 .0089'8000.0 .1589 39.534 .3129 .00799000.0 .1498 41.930 .3146 .007010000.0 .1421 44.201 .3160 .006320000.0 .1005 62.509 .3221 .0032
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PIU

AA

FI= I* Configuration of pile, bottom and wave surface with
notation.
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-band pass of ideal
filter

frmformulae due to
Tulcey.

Figue 4.Example of narrow band filter.
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50- Actual spectra
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Figure 5. Sketch of power spectrum (free surface) as a function of
frequency.
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Figure 6. Spectra of velocity u, and acceleration 5.
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